

EV Workplace Charging Power Demand ... the hidden secret

Richard A. Raustad Florida Solar Energy Center

HNEI Hawaiʻi Natural Energy Institute

School of Ocean and Earth Science and Technology University of Hawai'i at Mānoa

Workplace Charging Considerations

- Charging rate required for employees
- First cost of equipment
- Fee or non-fee based
- Impact on building energy/demand

EV Chargers Electrical Ratings

• AC Level 1 : 120 VAC, 1.9 kW

Typically 1.3 kW

• AC Level 2 : 240 VAC, 19.2 kW

Typically 6 kW

EV Chargers Electrical Ratings

- DC Level 1 : 500 VDC, 40 kW
- DC Level 2 : 500 VDC, 100 kW

CHAdeMO

Kia, Nissan, Mitsubishi, Subaru, Toyota SAE Combo

Audi, BMW, Chrysler, Daimler, Ford, GM, Porsche, Volkswagen

Equipment Costs

Charger	A	Recurring Costs		
	Payment	Equipment	Installation ² (transformer)	Networking (maintenance)
AC Level 1	No-fee	\$150	\$225	\$0 (\$50)
AC Level 2	No-fee	\$725	\$375	\$0 (\$250)
	Fee-based	\$2,125	\$4,875	\$300 - \$500 (\$250)
DC Level 2	Fee-based	\$23,500	\$13,125 (\$17,500)	\$300 - \$500 (\$1,500)

¹Agenbroad, J., Holland, B., "<u>Pulling Back the Veil on EV Charging Station Cost</u>", Rocky Mountain Institute, April 2014.

² Includes permitting

Operating Costs

	Recurring Costs		
Charger (10 kWh's/day)	Energy (sessions)	Demand ¹	
AC Level 1	\$300²	<mark>\$0</mark>	
(1 EV)	(250)	\$300 /EV/yr	
AC Level 2	\$810 ³	<mark>\$792</mark>	
(5.4 EV's)	(1,350)	\$297 /EV/yr	
DC Level 2	\$4,320 ⁴	<mark>\$5,016</mark>	
(28.8 EV's)	(7,200)	\$324 /EV/yr	

¹ AC Level 2: 6 kW, DC Level 2: 32 kW avg., \$11/kW, 12 months/year (MI: \$22/kW)

² 35 mi, 3.5 mi/kWh, \$0.12/kWh, \$0/kW (residential or non-demand electric rate)

³ 1.67 hours @ 6 kW, 5.4 times per day 5 days/week, 50 weeks, \$0.06/kWh (commercial electric rate)

⁴ 0.3125 hours @ 38 kW avg., 28.8 times per day, 5 days/week, 50 weeks, \$0.06/kWh (commercial)

Operating Costs

	Recurring Costs			
Charger (10 kWh's/day)	Energy (sessions)	Demand ¹		
AC Level 1	\$300²	<mark>\$0</mark>		
(1 EV)	(250)	\$300 /EV/yr		
AC Level 2	\$150 ³	<mark>\$792</mark>		
(1 EV)	(250)	\$942 /EV/yr		
DC Level 2	\$150 ⁴	<mark>\$2,904</mark>		
(1 EV)	(250)	\$3,054 /EV/yr		

¹ AC Level 2: 6 kW, DC Level 2: 32 kW avg., \$11/kW, 12 months/year (MI: \$22/kW)

² 35 mi, 3.5 mi/kWh, \$0.12/kWh, \$0/kW (residential or non-demand electric rate)

³ 1.67 hours @ 6 kW, 1 times per day 5 days/week, 50 weeks, \$0.06/kWh (commercial electric rate)

⁴ 0.3125 hours @ 22 kW avg., 1 time per day, 5 days/week, 50 weeks, \$0.06/kWh (commercial)

Charger Selection

What type of charger is appropriate for workplace charging?

EV Workplace Charging Power Demand ... the hidden secret

• Impact on Building Electrical Demand

• Demand Limiting Strategies

Illustrated by case study

FSEC Building Information

- 70,000 ft²

Power & Energy Society

- 200 tons chiller capacity
- 90 employees

- 2 workplace chargers
- 2 public Level 2
- 1 public DC Fast charger (45 kW)
- 5 1/2 PEV's (5 Leaf, 1 Volt)

(12 kW)

(12 kW)

Building Demand Impact Example

Charger Impact on Utility Cost Feb 6. 2015 – Jun 7, 2016

	Energy		Demand			Revenue
Charger Type	kWh	Cost	kW	Cost	Total	(session)
DC Fast	3,129	\$ 159	30	\$ 316	\$ 475	\$ 407 ₂₂₀
Public Lev 2	2,368	\$ 120	8	\$ 85	\$ 205	\$ 424 ₁₉₄
Employee Lev 2	7,235	\$ 367	36	\$ 379	\$ 746	503
Total	12,732	\$ 646	74	\$ 780	\$ 1,426	\$ 831 ₉₁₇

Normal Building Operation:

- 370 kW summer peak
- 1,500 MWh/yr
- \$10,000/mo. electric

Controllable Workplace Chargers

Demand Limiting Strategies

- Scheduling (passive)
- Turn off at peak (active)
- Chiller plant capacity reduction
- Auxilliary power interrupt
- EV as storage medium (V2G)

Planning for PEVs on a Highly Renewable Campus

EVs in the Future – World Sales Plug-in Light Vehicles

Current Research Activities FSEC Facilities Resource Study

Current Research Activities FSEC Charging Station

- Charging Technologies
- Electric Grid Integration
- Environmental Effects
- Transportation Planning

Current Research Activities FSEC EV Laboratory

- Charge vs Discharge
- V2G Applications
- Charging Optimization
- Electrical Demand

Current Research Activities FSEC EV Laboratory - Wireless Charging

Current Research Activities

Florida Turnpike Charging Station Optimization Study

deb

- Infrastructure requirements
- Queueing models
- Siting

Thank You

For more information: Richard Raustad rraustad@fsec.ucf.edu

Acknowledgement: work performed under the Electric Vehicle Transportation Center and funded through U.S. Department of Transportation Federal Grant: DTRT13-G-UTC51

