DTE Energy is an Integrated Energy Company

Strong, Stable and Growing Utilities
- Fully Regulated by Michigan Public Service Commission
- ~80% of total earnings

DTE Electric
- Electric generation and distribution
- 2.2 million customers

DTE Gas
- Natural gas transmission, storage and distribution
- 1.2 million customers

Complementary Non-Utility Businesses
- ~20% of total earnings

Gas Storage & Pipelines
- Transport and store natural gas
- 4 pipelines, 2 storage sites

Power & Industrial Projects
- Own and operate energy related assets
- 66 sites, 17 states

Energy Trading
- Generates economic value and provide strategic benefits
Agenda

- Why manage EV load?
- Local level
- System level
- Renewable variability
- Workplace charging
- Interoperability & standards
Residential Experimental PEV Rate

- PEV rate approved in August 2010 – 2,500 limit
- Choice of two Experimental Electric Vehicle Rate options:
 - Option 1 - Time of Use Rate
 - Option 2 - A Flat Rate (250 customer cap)
- Both options required a separately meter service
- An incentive up to $2,500 was offered to offset the purchase and installation costs for a Level 2 EVSE

Option 1: Time of Use Rate Option

- On-Peak: $0.18195 kWh*
- Off-Peak: $0.07695 kWh*

On-Peak: All kWh used between 9am and 11pm Monday- Friday
Off-Peak: All other kWh used.

*Prices do not include applicable surcharges and taxes

Option 2: Flat Rate Option

- $40 per month + applicable surcharges and taxes.
Residential Charging - Pilot PEV Rate
Average Demand - TOU vs Flat Rate
Distribution circuit load graphs
Summer 2012 high temperature days

<table>
<thead>
<tr>
<th>Day</th>
<th>High Temp</th>
<th>Low Temp</th>
<th>Avg. Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87</td>
<td>65</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>93</td>
<td>65</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>71</td>
<td>82</td>
</tr>
</tbody>
</table>
Typical system summer load curve – how to manage morning ramp rate with workplace chargers
Wind production is variable

DTE Energy Wind Park Total MW
Workplace Smart Charging Project - DOE Funded

- Install 24 charging stations in the DTE Energy HQ parking deck
- Utilize DTE’s Tropos mesh network to communicate with head end software
- Upgraded existing infrastructure to support increased load from EVSEs
- Utility service was not upgraded – New LED lighting installed
Delta’s “smart grid-capable” Level-2 EVSE

- Bi-directional communications between EVSE and energy service providers
- Revenue-grade metering
- Advanced metering infrastructure (AMI)/Ethernet/power line communications (PLC)/Wi-Fi/cellular/ZigBee interface capable
- Interface capable with in-home displays and home energy management systems
- Utility communication messaging
- Controls including direct load control at fixed percentage of EV load reduction, remote disconnect, etc.
- Zigbee bi-directional communication
- 0.5% accuracy in operation range
- Zigbee interface to AMI meter / wi-fi
- Display and control through Home Energy Management System (HEMS) user interface
- Smart Energy Profile (SEP) 1.1 (Time synchronization, DRLC, Price information)
- Charging current control through J1772 interface
DOE Project Task #1:

Workplace Charging EVSE Installations, 24 units
Includes the build and installation of 24 units of the EVSE, for installation and evaluation at DTEs downtown Detroit site

• 24 units are in operation

DOE Project Task #2

Monitoring and Network Software Installation.
This includes monitoring and evaluation of the EVSE performance in various scenarios anticipated by power company management, using the smart grid functions of the EVSEs, and network management software installed for this purpose.

• Software Installed:
 • Demand Response
 • Real-time monitoring
 • Charge Profiling
 • Data History
Infrastructure Upgrades

- 50kVA Transformer upgraded to 225 kVA
- Main breaker upgraded to 600 Amp
- 480/208 Volt transformer
- Upgraded existing service panel and added second service panel and bus
- Utility service was not upgraded – New LED lighting installed
EVSE Site

Total of 24 EVSEs
Four or five EVSEs around each column
EVSE Site

Photo of the 2nd generation EVSE Prototype installed and under field trial at DTE's parking garage in downtown Detroit, MI.

Guests viewing charging of Daimler Smart EV at the October 2014 demonstration event.
Network Architecture

- WiFi AP for EVSEs
- Tropos Radio
- CAT5e Ethernet cable
- DTE Energy Tropos Mesh Radio System
- SMS @ DTE Control Room
DTE Energy DR-SOC (DERMS)

Enterprise Integration

MDMS OMS GIS Etc.

DMS

ICCP

DR-SOC

DNP3 Master

SCADA / Field Networks

Field Communication Network or cellular

Sensors, Switches, Capacitors, Regulators

SOLAR BATTERY PEV
Site Management System
Charger Power Profile

- Power Profile display in 24 hr overview and close up view.
- Orange trace – max power setting
- Blue trace – real-time power
- Any profile curve can be entered into software

✓ Control Strategy - Based on Power Command Profile, distribute available capacity equally to those EVSEs in charging
Site Management System
Charger Power Profile

Time-of-day power profile

- Actual Power (KW)
- Power Command Profile (KW)
• From DTE HQ, uploaded DTE Energy PEV rate schedule to Volts through OnStar telematics
Use Case 1 is the B2B internet connection

- From the Utility Demand Response Management System to the Central Server utilizing the OpenADR 2b protocol.
- Implements DR Events and TOU Rate Tariff Schedules communicated via the B2B internet connection to the Central Server to the individual OEM servers to the PEVs.
VTO Systems Research Supporting Standards and Interoperability

- Vehicle to Building Integration Pathway
- Systems Research Supporting Standards and Interoperability
- Modeling and Control Software to Support V2G Integration
- Diagnostic Security Modules for Electric Vehicles to Building Integration

Multi-Lab EV Smart Grid Working Group
Thank you!